Tensorflow Pointer
Summary
The dtf
object can be used to create and transform tensors.
To use DynaML's tensorflow API, import it in your code/script/DynaML shell session.
import io.github.mandar2812.dynaml.tensorflow._
import org.platanios.tensorflow.api._
Creating Tensors.¶
Creating tensors using the dtf
object is easy, the user needs to provide a scala collection containing the
the data, the shape and data-type of the tensor.
There is more than one way to instantiate a tensor.
Enumeration of Values¶
import io.github.mandar2812.dynaml.tensorflow._
import org.platanios.tensorflow.api._
//Create a float tensor
val tensor_float = dtf.tensor_from[Float](
FLOAT32, Shape(2, 2))(
1f, 2f, 3f, 4f)
//Prints out a summary of the values in tensor1
tensor_float.summarize()
val tensor_double = dtf.tensor_from[Double](
FLOAT64, Shape(2, 2))(
1.0, 2.0, 3.0, 4.0)
tensor_double.summarize()
From a Scala Sequence¶
import io.github.mandar2812.dynaml.tensorflow._
import org.platanios.tensorflow.api._
val float_seq = Seq(1f, 2f, 3f, 4f)
val double_seq = Seq(1.0, 2.0, 3.0, 4.0)
//Specify data type as a string, and enumerate the shape
val tensor_float = dtf.tensor_from[Float]("FLOAT32", 2, 2)(float_seq)
//Prints out a summary of the values in tensor1
tensor_float.summarize()
val tensor_double = dtf.tensor_from[Double]("FLOAT64", 2, 2)(double_seq)
tensor_double.summarize()
From an Array of Bytes.¶
When dealing with binary data formats, such as images and other binary numerical formats, it is useful to be able to instantiate tensors from buffers of raw bytes.
import io.github.mandar2812.dynaml.tensorflow._
import org.platanios.tensorflow.api._
val byte_buffer: Array[Byte] = _
val shape: Shape = _
val byte_tensor = dtf.tensor_from_buffer(INT32, shape)(byte_buffer)
Apart from these functions, there are.
import io.github.mandar2812.dynaml.tensorflow._
import org.platanios.tensorflow.api._
//Double tensor
val t = dtf.tensor_f64(2, 2)(1.0, 2.0, 3.0, 4.0)
//32 bit Integer tensor
val t_int = dtf.tensor_i32(2, 3)(1, 2, 3, 4, 5, 6)
//Fill a (3, 2, 5) tensor, with the value 1.
val t_fill = dtf.fill(FLOAT32, 3, 2, 5)(1f)
Random Tensors¶
It is also possible to create tensors whose elements are independent and identically distributed, by using the DynaML probability API.
import breeze.stats.distributions._
import io.github.mandar2812.dynaml.probability._
import io.github.mandar2812.dynaml.tensorflow._
import org.platanios.tensorflow.api._
val rv = RandomVariable(new LogNormal(0.0, 1.5))
val random_tensor = dtf.random(FLOAT64, 3, 5, 2)(rv)
Operations on Tensors¶
Stack¶
DynaML>val random_tensor1 = dtf.random(FLOAT64, 2, 3)(rv)
random_tensor1: Tensor = FLOAT64[2, 3]
DynaML>val random_tensor2 = dtf.random(FLOAT64, 2, 3)(rv)
random_tensor2: Tensor = FLOAT64[2, 3]
DynaML>val t = dtf.stack(Seq(random_tensor1, random_tensor2), axis = 1)
t: Tensor = FLOAT64[2, 2, 3]
DynaML>val t0 = dtf.stack(Seq(random_tensor1, random_tensor2), axis = 0)
t0: Tensor = FLOAT64[2, 2, 3]
DynaML>random_tensor1.summarize(100, false)
res18: String = """FLOAT64[2, 3]
[[0.3501699906342581, 0.2900664662305818, 0.42806656451314345],
[0.3066005571688877, 1.3931959054429162, 0.6366232162759474]]"""
DynaML>random_tensor2.summarize(100, false)
res19: String = """FLOAT64[2, 3]
[[0.21565105620570899, 0.5267519630011802, 6.817248106561024],
[0.35121879449734744, 5.487926862392467, 2.3538094624119177]]"""
DynaML>t.summarize(100, false)
res16: String = """FLOAT64[2, 2, 3]
[[[0.3501699906342581, 0.2900664662305818, 0.42806656451314345],
[0.21565105620570899, 0.5267519630011802, 6.817248106561024]],
[[0.3066005571688877, 1.3931959054429162, 0.6366232162759474],
[0.35121879449734744, 5.487926862392467, 2.3538094624119177]]]"""
DynaML>t0.summarize(100, false)
res17: String = """FLOAT64[2, 2, 3]
[[[0.3501699906342581, 0.2900664662305818, 0.42806656451314345],
[0.3066005571688877, 1.3931959054429162, 0.6366232162759474]],
[[0.21565105620570899, 0.5267519630011802, 6.817248106561024],
[0.35121879449734744, 5.487926862392467, 2.3538094624119177]]]"""
Concatenate¶
DynaML>val t = dtf.concatenate(Seq(random_tensor1, random_tensor2), axis = 0)
t: Tensor = FLOAT64[4, 3]
DynaML>val t1 = dtf.concatenate(Seq(random_tensor1, random_tensor2), axis = 1)
t1: Tensor = FLOAT64[2, 6]
DynaML>t.summarize(100, false)
res28: String = """FLOAT64[4, 3]
[[0.3501699906342581, 0.2900664662305818, 0.42806656451314345],
[0.3066005571688877, 1.3931959054429162, 0.6366232162759474],
[0.21565105620570899, 0.5267519630011802, 6.817248106561024],
[0.35121879449734744, 5.487926862392467, 2.3538094624119177]]"""
DynaML>t1.summarize(100, false)
res29: String = """FLOAT64[2, 6]
[[0.3501699906342581, 0.2900664662305818, 0.42806656451314345, 0.21565105620570899, 0.5267519630011802, 6.817248106561024],
[0.3066005571688877, 1.3931959054429162, 0.6366232162759474, 0.35121879449734744, 5.487926862392467, 2.3538094624119177]]"""
Unstack¶
DynaML>dtf.unstack(t1, axis = 1)
res31: Seq[Tensor] = ArraySeq(FLOAT64[2], FLOAT64[2], FLOAT64[2], FLOAT64[2], FLOAT64[2], FLOAT64[2])
DynaML>res31.map(t => t.summarize(100, false))
res33: Seq[String] = ArraySeq(
"""FLOAT64[2]
[0.3501699906342581, 0.3066005571688877]""",
"""FLOAT64[2]
[0.2900664662305818, 1.3931959054429162]""",
"""FLOAT64[2]
[0.42806656451314345, 0.6366232162759474]""",
"""FLOAT64[2]
[0.21565105620570899, 0.35121879449734744]""",
"""FLOAT64[2]
[0.5267519630011802, 5.487926862392467]""",
"""FLOAT64[2]
[6.817248106561024, 2.3538094624119177]"""
)